

M68000 AL SPEC **ELECTRICAL SPECIFICATIONS** AL CHIMIERS

OROI

Marchine DOCUMENT MOTOR MEMORIES does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not authorized for use as components in life support devices or systems intended for surgical implant into the body or intended to support or sustain life. Buyer agrees to notify Motorola of any such intended end use whereupon Motorola shall determine availability and suitability of its product or products for the use intended. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action Employer.

MAXIMUM RATINGS

Detter	0		Va	lue		11.24
Rating	Symbol	MC68000	MC68HC000	MC68008	MC68010	- Unit
Supply Voltage	Vcc	-0.3 to 7.0	-0.3 to 6.5	-0.3 to 7.0	- 0.3 to 7.0	V
Input Voltage	Vin	-0.3 to 7.0	-0.3 to 6.5	-0.3 to 7.0	-0.3 to 7.0	V
Maximum Operating Temperature Range MC68000C	Тд	TL to TH 0 to 70 - 40 to 85	TL to TH 0 to 70 —	TL to TH 0 to 70 −40 to 85	TL to TH 0 to 70 −40 to 85	Ŷ
Storage Temperature	T _{stg}	-55 to 150	- 55 to 150	-55 to 150	-55 to 150	°C

THERMAL CHARACTERISTICS

The following thermal characteristics apply to the MC68000, MC68HC000, MC68008 and the MC68010.

Ceramic, Type L/LC 30 15 Ceramic, Type R/RC 33 16 Plastic, Type P 30 15* Plastic, Type FN 45* 25*	Ceramic, Type L/LC 30 15* Ceramic, Type R/RC 33 16 Plastic, Type P 30 15* Plastic, Type FN 45* 25*	Ceramic, Type L/LC 30 15 Ceramic, Type R/RC 33 16 Plastic, Type P 30 15* Plastic, Type FN 45* 25* timated 15 16	Ceramic, Type L/LC 30 15* Ceramic, Type R/RC 33 16 Plastic, Type P 30 15* Plastic, Type FN 45* 25*	Characteristic	Symbol	Value	Symbol	Value Ratin
				Thermal Resistance — Ceramic, Type L/LC Ceramic, Type R/RC Plastic, Type P Plastic, Type FN	₽L [⊕]	33 30	θJC	15* 15 15*
	A CLIMPER	E-DOCUMPENT	E-DOCUMPLIN	stimated			Ś	
		E DOCY	t. DOCL		Ø			
				EDOCU				

This device contains protective circuitry against damage due to high static voltages or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either GND or V_{CC}).

POWER CONSIDERATIONS

The average die-junction temperature, TJ, in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \cdot \theta_{JA})$$
(1)

where:

For most applications PI/O<PINT and can be neglected.

An appropriate relationship between PDand TJ (if Provisinglected) is:

$$P_{D} = K \div (T_{J} + 273 \ ^{\circ}C)$$
 (2)

Solving equations (1) and (2) for K gives

$$K = P_{D} \cdot (T_{A} + 273^{\circ}C) + \theta_{JA} \cdot P_{D}^{2}$$
(3)

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at thermal equilibrium) for a known T_A. Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A.

The curve shown in Figure 1 gives the graphic solution to the above equations for the specified power dissipation of 1.5 watts over the ambient temperature range of -55° C to 125°C using a maximum θ_{JA} of 45°C/W. Ambient temperature is that of the still air surrounding the device. Lower values of θ_{JA} cause the curve to shift downward slightly; for instance, for θ_{JA} of 40°/W, the curve is just below 1.4 watts at 25°C.

The total thermal resistance of a package (θ_{JA}) can be separated into two components, θ_{JC} and θ_{CA} , representing the barrier to heat flow from the semiconductor junction to the package (case) surface (θ_{JC}) and from the case to the outside ambient air (θ_{CA}). These terms are related by the equation:

$$\theta_{\mathsf{J}\mathsf{A}} = \theta_{\mathsf{J}\mathsf{C}} + \theta_{\mathsf{C}\mathsf{A}} \tag{4}$$

M68000 ELECTRICAL SPECIFICATIONS

MOTOROLA



Figure 1. MC68000 Power Dissipation (PD) vs Ambient Temperature (TA)

 θ_{JC} is device related and cannot be influenced by the user. However, θ_{CA} is user dependent and can be minimized by such thermal management techniques as heat sinks, ambient air cooling, and thermal convection. Thus, good thermal management on the part of the user can significantly reduce θ_{CA} so that θ_{JA} approximately equals θ_{JC} . Substitution of θ_{JC} for θ_{JA} in equation (1) results in a lower semiconductor junction temperature.

Table 1 summarizes maximum power dissipation and average junction temperature for the curve drawn in Figure 1, using the minimum and maximum values of ambient temperature for different packages and substituting θ_{JC} for θ_{JA} (assuming good thermal management). Table 2 provides the maximum power dissipation and average junction temperature assuming that no thermal management is applied (i.e., still air).

NOTE

Since the power dissipation curve shown in Figure 1 is negatively sloped, power dissipation declines as ambient temperature increases. Therefore, maximum power dissipation occurs at the lowest rated ambient temperature, but the highest average junction temperature occurs at the maximum ambient temperature where *power dissipation is lowest*.

Values for thermal resistance presented in this manual, unless estimated, were derived using the procedure described in Motorola Reliability Report 7843, "Thermal Resistance Measurement Method for MC68XXX Microcomponent Devices", and are provided for design purposes only. Thermal measurements are complex and dependent on procedure and setup. User-derived values for thermal resistance may differ.

Package	T _A Range	θJC (°C/W)	P _D (W) @ T _A Min.	Tj (°C) @ Ta Min.	P _D (W) @ T _A Max.	Гј (°С) @ Тд Мах.
		MC	58000		$\overline{\mathbf{N}}$	
L/LC	0°C to 70°C 40°C to 85°C 0°C to 85°C	15 15 15	1.5 1.7 1.5	23 14 23	1.2 1.2 1.2	88 103 103
Р	0°C to 70°C	15	1.5	23	1.2	88
R/RC	0°C to 70°C - 40°C to 85°C 0°C to 85°C	15 15 15	1.5 1.7 1.5	23 - 14 23	1.2 1.2 1.2	88 103 103
FN	0℃ to 70℃	25	1.5	38	1.2	101
		MC	68008			
LC	0°C to 70°C – 40°C to 85°C 0°C to 85°C	15 15 15	1.5 1.7 1.5	23 - 14 23	1.2 1.2 1.2	88 103 103
Ρ	0°C to 70°C	20	1.5	30	1.2	95
FN	0°C to 70°C	30	1.5	45	1.3	108
		MC	68010			
L/LC	0°C to 70°C - 40°C to + 85°C 0°C to 85°C	15 15 15	1.5 1.7 1.5	23 14 23	1.2 1.2 1.2	88 103 103
Р	0°C to 70°C	15	1.5	23	1.2	88
R/RC	0°C to 70°C - 40°C to + 85°C 0°C to 85°C	15 15 15	1.5 1.7 1.5	23 - 14 23	1.2 1.2 1.2	88 103 103
FN	0°C to 70°C	25	1.5	38	1.2	101

Table 1. Power Dissipation and Junction Temperature vs Temperature ($\theta_{JC} = \theta_{JA}$)

NOTE: Table does not include values for the MC68000 12F.

Table 2. MC68000 Power Dissipation and Junction Temperature vs Temperature ($\theta_{JC} \neq \theta_{JA}$)

Package	T _A Range	θJA (°C/W)	P _D (W) @ T _A Min.	Тј (°С) @ Тд Min.	P _D (W) @ T _A Max.	Тј (°С) @ Тд Мах.
		мс	68000			
L/LC	0°C to 70°C - 40°C to 85°C 0°C to 85°C	30 30 30	1.5 1.7 1.5	23 - 14 23	1.2 1.2 1.2	88 103 103
P	0°C to 70°C	30	1.5	23	1.2	88
R/RC	0°C to 70°C 40°C to 85°C 0°C to 85°C	33 33 33	1.5 1.7 1.5	23 - 14 23	1.2 1.2 1.2	88 103 103
FN	0°C to 70°C	40	1.5	38	1.2	101
		MC	68008		6.	
LC	0°C to 70°C -40°C to 85°C 0°C to 85°C	40 40 40	1.5 1.7 1.5	60 - 27 60	1.2 1.2 1.2	121 134 134
P	0°C to 70°C	40	1.5	60	1.2	121
FN	0°C to 70°C	50	1.5	75	1.3	134
	• • • • • • • • •	MC	68010	<i>\$</i>		
L/LC	0°C to 70°C -40°C to +85°C 0°C to 85°C	30 30 30	1.5 1.7 1.5	23 - 14 23	1.2 1.2 1.2	88 103 103
P	0°C to 70°C	30	1.5	23	1.2	88
R/RC	0°C to 70°C -40°C to +85°C 0°C to 85°C	33 33 33	1.5 1.7 1.5	23 - 14 23	1.2 1.2 1.2	88 103 103
FN	0°C to 70°C	40	1.5	38	1.2	101

NOTE: Table does not include values for the MC68000 12F.

CMOS CONSIDERATIONS

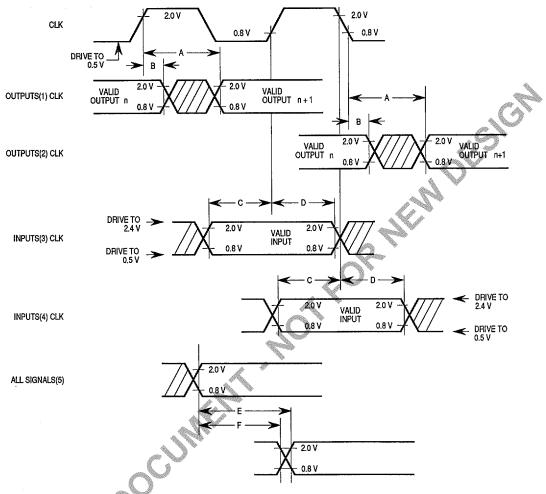
The MC68HC000, with its significantly lower power consumption, has other considerations. The CMOS cell is basically composed of two complementary transistors (a P channel and an N channel), and only one transistor is turned on while the cell is in the steady state. The active P-channel transistor sources current when the output is a logic high and presents a high impedance when the output is a logic low. Thus, the overall result is extremely low power consumption because no power is lost through the active P-channel transistor. Also, since only one transistor is turned on during the steady state, power consumption is determined by leakage currents.

Because the basic CMOS cell is composed of two complementary transistors, a virtual semiconductor controlled rectifier (SCR) may be formed when an input exceeds the supply voltage. The SCR that is formed by this high input causes the device to become latched in a mode that may result in excessive current drain and eventual destruction of the device. Although the MC68HC000 is implemented with input protection diodes, care should be exercised to ensure that the maximum input voltage specification is not exceeded. Some systems may require that the CMOS circuitry be isolated from voltage transients; others may require no additional circuitry.

The MC68HC000, implemented in CMOS, is applicable to designs to which the following considerations are relevant:

- 1. The MC68HC000 completely satisfies the input/output drive requirements of CMOS logic devices.
- The HCMOS MC68HC000 provides an order of magnitude reduction in power dissipation when compared to the HMOS MC68000. However, the MC68HC000 does not offer a "power-down" mode. The minimum operating frequency of the MC68HC000 is 4 MHz.

AC ELECTRICAL SPECIFICATION DEFINITIONS


The AC specifications presented consist of output delays, input setup and hold times, and signal skew times. All signals are specified relative to an appropriate edge of the clock and possibly to one or more other signals.

The measurement of the AC specifications is defined by the waveforms shown in Figure 2. To test the parameters guaranteed by Motorola, inputs must be driven to the voltage levels specified in Figure 2. Outputs are specified with minimum and/or maximum limits, as appropriate, and are measured as shown in Figure 2. Inputs are specified with minimum setup and hold times, and are measured as shown. Finally, the measurement for signal-to-signal specifications is also shown.

NOTE

The testing levels used to verify conformance to the AC specifications does not affect the guaranteed DC operation of the device as specified in the DC electrical characteristics.

8-CA

NOTES:

- 1. This output timing is applicable to all parameters specified relative to the rising edge of the clock.
- 2. This output timing is applicable to all parameters specified relative to the falling edge of the clock.
- 3. This input timing is applicable to all parameters specified relative to the rising edge of the clock.
- 4. This input timing is applicable to all parameters specified relative to the falling edge of the clock.
- 5. This timing is applicable to all parameters specified relative to the assertion/negation of another signal.

LEGEND:

- A. Maximum output delay specification.
- B. Minimum output hold time.
- C. Minimum input setup time specification.
- D. Minimum input hold time specification.
- E. Signal valid to signal valid specification (maximum or minimum).
- F. Signal valid to signal invalid specification (maximum or minimum).

Figure 2. Drive Levels and Test Points for AC Specifications

DC ELECTRICAL CHARACTERISTICS (MC68000, MC68008, MC68010)

 $(V_{CC} = 5.0 \text{ Vdc} \pm 5\%; \text{ GND} = 0 \text{ Vdc}; T_A = T_L \text{ to } T_H)$

	cteristic	Symbol	Min	Max	Un
IDDUT HIGH VOITAGA		VIH	2.0	Vcc	v
Input High Voltage		VIL	GND - 0.3	0.8	r v
· · · · · · · · · · · · · · · · · · ·	R, BGACK, BR, DTACK, CLK, IPLO-IPL2, VPA HALT, RESET	liΝ		2.5 20	μ,
Three-State (Off State) Input Current	ĀŠ, A1-A23, D0-D15, FC0-FC2, LDS, R/Ŵ, UDS, VMA	ITSI		20	μ
Output High Voltage (I_{OH} = -400 µA) (I_{OH} = -400 µA)	E* E, ĀS, A1-A23, BG, D0-D15, FC0-FC2, LDS, RŴ, UDS, VMA	VOH	V _{CC} - 0.75 2.4	-	٧
Output Low Voltage (I _{OL} = 1.6 mA) (I _{OL} = 3.2 mA) (I _{OL} = 5.0 mA) (I _{OL} = 5.3 mA)	HALT A1-A23, BG, FC0-FC2 RESET E, AS, D0-D15, LDS, R/W, UDS, VMA	VOL		0.5 0.5 0.5 0.5	V
Power Dissipation		PD***	_		w
Capacitance (Vin=0 V, TA=25°C, Freque	ency = 1 MHz}**	Cin	_	20.0	pł
Load Capacitance	HALT	CL		70 130	pl
CHINE DOCUS	Street Stre				

DC ELECTRICAL CHARACTERISTICS (MC68HC000) (V_{CC} =5.0 Vdc±5%; GND=0 Vdc; T_A=T_L to T_H)

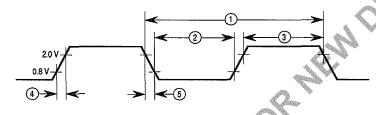
	Characteristic	Symbol	Min	Мах	Unit	
Input High Voltage		VIH	2.0	Vcc	v	
Input Low Voltage		VIL	GND-0.3	0.8	V	1
Input Leakage Current @ 5.25 V	BERR, BGACK, BR, DTACK, CLK, IPLO-IPL2, V HALT, RE			2.5 20	μA	
Three-State (Off State) Input (& 2.4 V/0.4 V	t Current AS, A1-A23, D0- FC0-FC2, LDS, R/W, UDS, V		—	20	μA	Ø
Output High Voltage {I _{OH} = - 400 μA}	E, AS, A1-A23, BG, D0- FC0-FC2, LDS, R/W, UDS, V		V _{CC} - 0.75		V	*
Output Low Voltage (I _{OL} = 1.6 mA) (I _{OL} = 3.2 mA) (I _{OL} = 5.0 mA) (I _{OL} = 5.3 mA)	A1-A23, BG, FC0	SET		0.5 0.5 0.5 0.5	V	
Current Dissipation*	f=8 f=10 f=12.5 f=16.67	MHz MHz	<u> </u>	25 30 35 50	mA	
Power Dissipation	f=8 f=10 f=12.5	MHz		0.13 0.16 0.19 0.26	w	
Capacitance (Vin=0 V, TA=	25°C, Frequency = 1 MHz}**	Cin	-	20.0	рF	1
Load Capacitance	All Ot	IALT CL hers	-	70 130	pF]

*Currents listed are with no loading.

**Capacitance is periodically sampled rather than 100% tested.

AC ELECTRICAL SPECIFICATIONS — CLOCK TIMING (see Figure 3)

Num.	Characteristic	8 M	Hz*	10 N	/Hz*	12.5	MHz*		7 MHz 2F'	16	MHz	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
	Frequency of Operation	4.0	8.0	4.0	10.0	4.0	12.5	8.0	16.7	8.0	16.7	MHz
1	Cycle Time	125	250	100	250	80	250	60	125	60	125	ns
2,3	Clock Pulse Width (Measured from 1.5 V to 1.5 V for 12F)	55 55	125 125	45 45	125 125	35 35	125 125	27 27	62.5 62.5		62.5 62.5	
4,5	Clock Rise and Fall Times	-	10 10		10 10		5 5	-	5 5	-	5 5	ns


*These specifications represent an improvement over previously published specifications for the 8-, 10-, and 12.5-MHz MC68HC000 and are valid only for product bearing date codes of 8827 and later.

AC ELECTRICAL SPECIFICATIONS — CLOCK TIMING (MC68008)

(see Figure 3)

Al.	Ol and start at a	Cumbal	8 N	1Hz*	10 M	/IHz*	11
Num.	Characteristic	Symbol	Min	Max	Min	Max	Unit
	Frequency of Operation	f	2.0	8.0	2.0	10.0	MHz
1	Clock Period	t _{cyc}	125	500	100	500	ns
2,3	Clock Pulse Width	^t CL [,] ^t CH	55 ·	250	45	250	ns
4,5	Clock Rise and Fall Times	tCr, tCf	_	10	_	10	ns

*These specifications represent an improvement over previously published specifications for the 8- and 10-MHz MC68008 and are valid only for product bearing date codes of 8827 and later.

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volt and a high voltage of 2.0 volts, unless otherwise noted. The voltage swing through this range should start outside and pass through the range such that the rise or fall will be linear between 0.8 volt and 2.0 volts.

Figure 3. Clock Input Timing Diagram

AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES

 $(V_{CC} = 5.0 \text{ Vdc} \pm 5\%; \text{ GND} = 0 \text{ Vdc}; T_A = T_L \text{ to } T_H; \text{ see Figures 4, 5, 9, 10, and 11})$

Num.	Characteristic	81	MHz*	10 N	1Hz*	12.5	MHz*		' MHz 2F'	16	ИНz	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
6	Clock Low to Address Valid	—	62	-	50	—	50	-	50		30	ns
6A	Clock High to FC Valid	Ι	62	_	50	_	45	-	45	0	30	ns
7	Clock High to Address, Data Bus High Impedance (Maximum)	I	80	—	70	. —	60	—	50	—	50	ns
8	Clock High to Address, FC Invalid (Minimum)	0		0	-	0	-	0	-	0	_	ns
9 ¹	Clock High to AS, DS Asserted	3	60	3	50	3	40	3	40	3	30	ns
112	Address Valid to AS, DS Asserted (Read)/AS Asserted (Write)	30		20	-	15	—	15	_	15	_	ns
201 at 13	FC Valid to \overline{AS} , \overline{DS} Asserted (Read)/ \overline{AS} Asserted (Write)	90		70	_	60		30	—	45	_	ns
121	Clock Low to AS, DS Negated	_	62		50	-	40	—	40	3	30	ns
13 ²	AS, DS Negated to Address, FC Invalid	40		30	_	20	-	10	_	15	-	ns
14 ²	AS (and DS Read) Width Asserted	270		195	-	160	_	120	_	120	—	ns
14A	DS Width Asserted (Write)	140	-	95	-	80	_	60	-	60	-	ns
15 ²	AS, DS Width Negated	150	_	105	-	65	—	60	_	60	-	ns

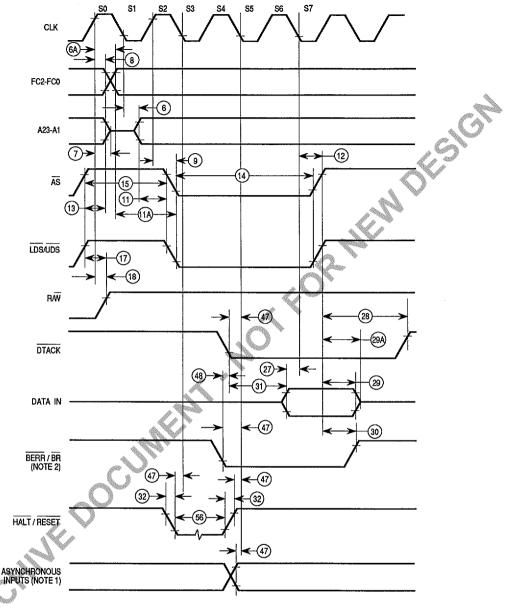
AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES

(Continued)

Num.	Characteristic	8	MHz*	10 N	1Hz*	12.5	ViHz*		MHz 2F'	16 1	ИНz	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
16	Clock High to Control Bus High Impedance		80	-	70	_	60	_	50	1	50	ns
17 ²	AS, DS Negated to R/W Invalid	40		30	-	20	-	10	—	15	—	ns
18 ¹	Clock High to R/W High (Read)	0	55	0	45	0	40	0	40	0	30	ns
20 ¹	Clock High to R/W Low (Write)	0	55	0	45	0	40	0	40	0	30	ns
20A ^{2,6}	AS Asserted to R/W Valid (Write)	—	10		10	—	10		10		10	ns
21 ²	Address Valid to R/W Low (Write)	20	—	0		0	—	0	—	0	X	ns
21A ²	FC Valid to R/W Low (Write)	60		50		30	_	20	-7	30)	ns
22 ²	R/W Low to DS Asserted (Write)	80	1	50	—	30	ł	20		30	-	ns
23	Clock Low to Data-Out Valid (Write)	—	62	_	50	1	50	Care .	50	_	30	ns
25 ²	AS, DS Negated to Data-Out Invalid (Write)	4010		30	-	20	₫ 2	15	- I	15	-	ns
26 ²	Data-Out Valid to DS Asserted (Write)	40		30	-	20	-	15	—	15	-	ns
27 ⁵	Data-In Valid to Clock Low (Setup Time on Read)	10	_	10	7	10	÷ -	7	—	5		ns
27A ⁵	Late BERR Asserted to Clock Low (Setup Time)	45	—	45		45	_	—	-	-		ns
28 ²	AS, DS Negated to DTACK Negated (Asynchronous Hold)	0	24011	0	190	0	150	0	110	0	110	ns
29	AS, DS Negated to Data-In Invalid (Hold Time on Read)	0		0	-	0	-	0	—	0	-	ns
29A	AS, DS Negated to Data-In High Impedance	_	187	-	150	_	120	_	90	—	90	ns
30	AS, DS Negated to BERR Negated	0	_	0	—	0	_	0	_	0	_	ns
31 ^{2,5}	DTACK Asserted to Data-In Valid (Setup Time)	_	90	-	65	_	50	-	40	_	50	ns
32	HALT and RESET Input Transition Time	0	200	0	200	0	200	0	150	—	150	ns
33	Clock High to BG Asserted	_	62	_	50	_	40	-	40	0	30	ns
34	Clock High to BG Negated	-	62	-	50	-	40	—	40	0	30	ns
35	BR Asserted to BG Asserted	1.5	3.5	1.5	3.5	1.5	3.5	1.5	3.5	1.5	3.5	Ciks
36 ⁷	BR Negated to BG Negated	1.5	3.5	1.5	3.5	1.5	3.5	1.5	3.5	1.5	3.5	Clks
37	BGACK Asserted to BG Negated	1.5	3.5	1.5	3.5	1.5	3.5	1.5	3.5	1.5	3.5	Clks
37A ⁸	BGACK Asserted to BR Negated	20	1.5 Clks	20	1.5 Ciks	20	1.5 Clks	10	1.5 Clks	10	1.5 Clks	ns
38	BG Asserted to Control, Address, Data Bus High Impedance (AS Negated)	-	80	-	70	-	60	-	50	-	50	ns
39	BG Width Negated	1.5	_	1.5		1.5	-	1.5		1.5	—	Clks
40	Clock Low to VMA Asserted		70	-	70	_	70	_	50	_	50	ns
41	Clock Low to E Transition	-	5512	-	45	-	35	1-	35		35	ns
42	E Output Rise and Fall Time	1_	15	-	15	-	15	-	15	-	15	ns
44	AS, DS Negated to VPA Negated	0	120	0	90	0	70	0	50	0	50	ns
45	E Low to Control, Address Bus Invalid (Address Hold Time)	30	-	10	-	10	-	10	-	10	-	ns

AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES

(Concluded)

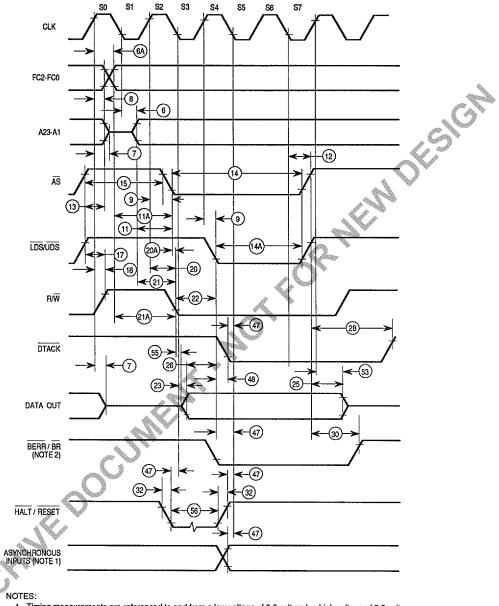

Num.	Characteristic	8	MHz*	10 N	1Hz*	12.5 (ViHz*		MHz 2F'	16 1	ИНz	Unit	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
46	BGACK Width Low	1.5	_	1.5	—	1.5	_	1.5	1	1.5	-	Clks	
47 ⁵	Asynchronous Input Setup Time	10	-	10		10	-	10	-	5	_	ns	۵.
482,3	BERR Asserted to DTACK Asserted	20	_	20	—	20	—	10	-	10	-	ns	(cond)
48 ^{2,3,5}	DTACK Asserted to BERR Asserted (MC68010 Only)	-	80	-	55	—	35	-	-	—	-4	ns	
49 ⁹	AS, DS, Negated to E Low	- 70	70	- 55	55	- 45	45	- 35	35	35	35	ns	
50	E Width High	450	_	350	_	280	—	220		220	<u> </u>	ns	
51	E Width Low	700	_	550	-	440	—	340	1	340	-	ns	
53	Data-Out Hold from Clock High	0	-	0	-	0		0	A.	0	—	ns	
54	E Low to Data-Out Invalid	30	_	20	_	15	Å	10	—	10	—	ns	
55	R/W Asserted to Data Bus Impedance Change	30	_	20	-	10		0	—	0	-	ns	
56 ⁴	HALT/RESET Pulse Width	10		10		10	- -	10	-	10	_	Clks	
57	BGACK Negated to AS, DS, R/W Driven	1.5	_	1.5		1.5	-	1.5	-	1.5	-	Clks	
57A	BGACK Negated to FC, VMA Driven	1	_	1	n de la	1	-	1	_	1	—	Clks	
58 ⁷	BR Negated to AS, DS, R/W Driven	1.5	A	1.5	_	1.5	·	1.5		1.5	_	Clks	
58A ⁷	BR Negated to FC, VMA Driven	1	<u> </u>	1	_	1	—	1	-	1	_	Clks	

*These specifications represent improvement over previously published specifications for the 8-, 10-, and 12.5-MHz MC68HC000 and are valid only for product bearing date codes of 8827 and later.

NOTES:

- 1. For a loading capacitance of less than or equal to 50 pF, subtract 5 ns from the value given in the maximum columns.
- Actual value depends on clock period.
- 3. If #47 is satisfied for both DTACK and BERR, #48 may be ignored. In the absence of DTACK, BERR is an asynchronous input using the asynchronous input setup time (#47).
- 4. For power-up, the MC68HC000 must be held in the reset state for 100 ms to allow stabilization of on-chip circuitry. After the system is powered up, #56 refers to the minimum pulse width required to reset the processor.
- 5. If the asynchronous input setup time (#47) requirement is satisfied for DTACK, the DTACK asserted to data setup time (#31) requirement can be ignored. The data must only satisfy the data-in to clock low setup time (#27) for the following clock cycle.
- 6. When \overline{AS} and R/W are equally loaded (± 20%), subtract 5 ns from the values given in these columns.
- 7. The processor will negate BG and begin driving the bus again if external arbitration logic negates BR before asserting BGACK.
- 8. The minimum value must be met to guarantee proper operation. If the maximum value is exceeded, BG may be reasserted.
- 9. The falling edge of S6 triggers both the negation of the strobes (AS and xDS) and the falling edge of E. Either of these events can occur first, depending upon the loading on each signal. Specification #49 indicates the absolute maximum skew that will occur between the rising edge of the strobes and the falling edge of the E clock.
- 10. 245 ns for the MC68008.
- 11. 50 ns for the MC68008.

12, 50 ns for the MC68008.



NOTES:

- 1. Setup time for the asynchronous inputs IPL2-IPL0 AND VPA (#47) guarantees their recognition at the next falling edge of the clock.
- 2. BR need fall at this time only to insure being recognized at the end of the bus cycle.
- 3. Timing measurements are referenced to and from a low voltage of 0.8 volt and a high voltage of 2.0 volts, unless otherwise noted. The voltage swing through this range should start outside and pass through the range such that the rise or fall is linear between 0.8 volt and 2.0 volts.

Figure 4. Read-Cycle Timing Diagram

M68000 ELECTRICAL SPECIFICATIONS

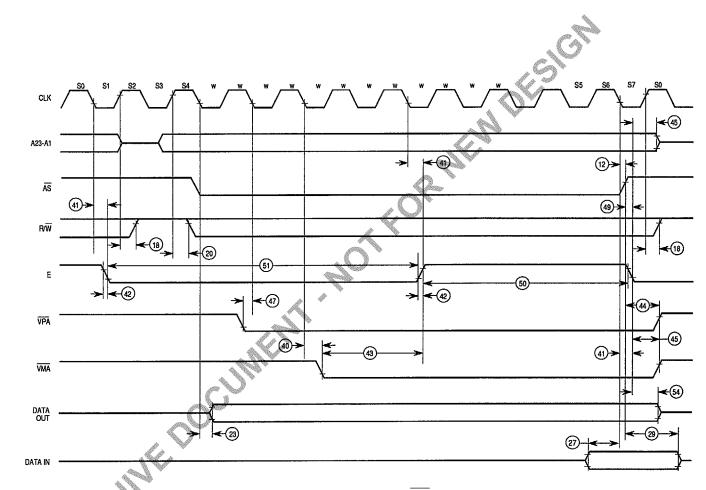
- Timing measurements are referenced to and from a low voltage of 0.8 volt and a high voltage of 2.0 volts, unless otherwise noted. The voltage swing through this range should start outside and pass through the range such that the rise or fall is linear between 0.8 volt and 2.0 volts.
- Because of loading variations, R/W may be valid after AS even though both are initiated by the rising edge of S2 (specification #20A).

Figure 5. Write-Cycle Timing Diagram

Num.	Characteristic	8 M	Hz*	10 N	/Hz*	12.5	MHz*		' MHz 2 F '	16 [MHz	Unit	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
12 ¹	Clock Low to AS, DS Negated	-	62		50	Ι	40	-	40	3	30	ns	
18 ¹	Clock High to R/W High (Read)	0	55	0	45	0	40	0	40	0	30	ns	
20 ¹	Clock High to R/W Low (Write)	. 0	55	0	45	0	40	0	40	0	30	ns	
23	Clock Low to Data-Out Valid (Write)	1	62	1	50	i	50	—	50	I	30	ns	
27	Data-In Valid to Clock Low (Setup Time of Read)	10	-	10	—	10		7	-	5	Ł	ns	
29	AS, DS Negated to Data-In Invalid (Hold Time on Read)	0	_	0	_	0		0	-	Q.	L/	ns	
40	Clock Low to VMA Asserted	_	70	—	70	-	70	-	50	-	50	ns	
41	Clock Low to E Transition	-	55	-	45	—	35		35		35	ns	Ì
42	E Output Rise and Fall Time	_	15	—	15	—	15	\mathbf{i}	15	—	15	ns	
43	VMA Asserted to E High	200	-	150		90		80	-	80	1	ns	
44	AS, DS Negated to VPA Negated	0	120	0	90	0	70	Ō	50	0	50	ns	
45	E Low to Control, Address Bus Invalid (Address Hold Time)	30	-	10	-(10	<u></u>	10	-	10		กร	
47	Asynchronous Input Setup Time	10	-	10	Â,	10	-	10	-	5 ³	-	ns	
49 ²	AS, DS, Negated to E Low	- 70	70	- 55	55	- 45	45	- 35	35	- 35	35	ns	
50	E Width High	450		350	—	280		220		220		ns	
51	E Width Low	700		550		440		340	-	340	-	ns	
54	E Low to Data-Out Invalid	đ 0	_	20	-	15		10	_	10	-	ns]

AC ELECTRICAL SPECIFICATIONS — PERIPHERAL CYCLES TO M6800

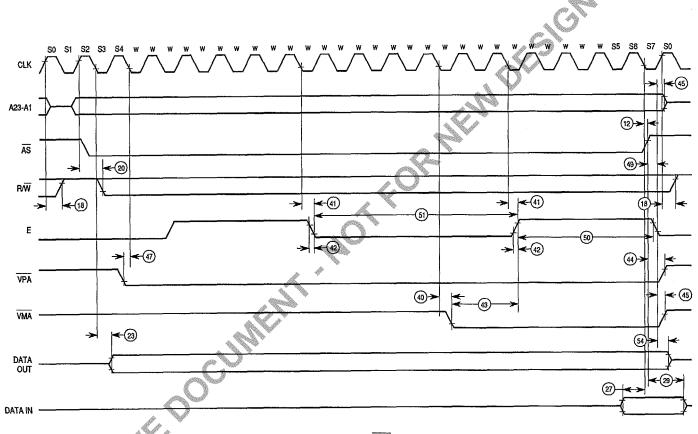
 $(V_{CC}=5.0 \text{ Vdc}\pm5\%; \text{ GND}=0 \text{ Vdc}; T_A=T_L \text{ to } T_H; \text{ see Figures 6 and 7})$


*These specifications represent an improvement over previously published specifications for the 8-, 10-, and 12.5-MHz MC68HC000 and are valid only for product bearing date codes of 8827 and later.

NOTES:

For a loading capacitance of less than or equal to 50 pF, subtract 5 ns from the value given in the maximum columns.

2. The falling edge of S6 trigger both the negation of the strobes (AS and xDS) and the falling edge of E. Either of these events can occur first, depending upon the loading on each signal. Specification #49 indicates the absolute maximum skew that will occur between the rising edge of the strobes and the falling edge of the E clock.


3. 10 ns for MC68000.

NOTE: This timing diagram is included for those who wish to design their own circuit to generate VMA. It shows the best case possibly attainable.

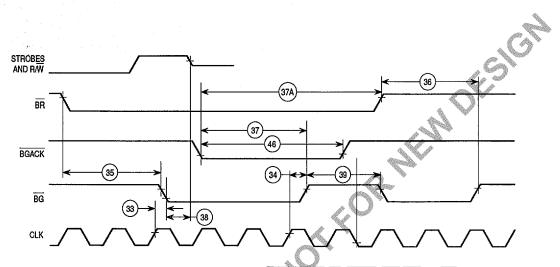
Figure 6. Peripheral Timing Diagram (Best Case)

NOTE: This timing diagram is included for those who wish to design their own circuit to generate VMA. It shows the worst case possibly attainable. GROUN

Figure 7. Peripheral Timing Diagram (Worst Case)

17

AC ELECTRICAL SPECIFICATIONS — BUS ARBITRATION

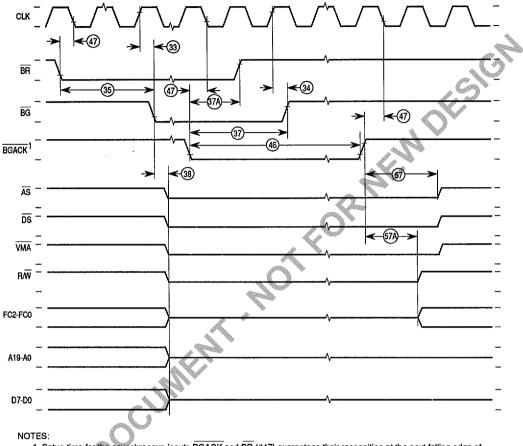

Num.	Characteristic	8 MHz*		10 MHz*		12.5 MHz*		16.67 MHz '12F'		16 MHz		Unit	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
7	Clock High to Address, Data Bus High Impedance (Maximum)	-	80	—	70	-	60	_	50	1	50	ns	
16	Clock High to Control Bus High Impedance	_	80		70	-	60	—	50	—	50	ns	Carify
33	Clock High to BG Asserted	—	62	-	50	—	40	-	40	0	30	ns) Ť
34	Clock High to BG Negated	-	62	-	50	-	40	-	40	0	30	ns	
35	BR Asserted to BG Asserted	1.5	3.5	1.5	3.5	1.5	3.5	1.5	3.5	1.5	3.5	Clks	
36 ¹	BR Negated to BG Negated	1.5	3.5	1.5	3.5	1.5	3.5	1.5	3.5	1,5	3.5	Clks	
37	BGACK Asserted to BG Negated	1.5	3.5	1.5	3.5	1.5	3.5	1.5	3,5	1.5	3.5	Ciks	
37A ²	BGACK Asserted to BR Negated	20	1.5 Clks	20	1.5 Clks	20	1.5 Clks	10	1.5 Clks	10	1.5 Clks	ns	
38	BG Asserted to Control, Address, Data Bus High Impedance (AS Negated)	-	80	—	70	_	60	_	50	—	50	ns	
39	BG Width Negated	1.5	_	1.5		1.5	-	1.5	-	1.5	-	Clks	
46	BGACK Width Low	1.5	-	1.5	\mathbb{V}	1.5	-	1.5	-	1.5	-	Clks	
47	Asynchronous Input Setup Time	10		10	-	10	-	10	—	5	-	ns	
57	BGACK Negated to AS, DS, R/W Driven	1.5		⊳1.5	—	1.5	-	1.5	_	1.5	—	Clks	
57A	BGACK Negated to FC, VMA Driven	1	Å	1	-	1	—	1	-	1		Clks	
58 ¹	BR Negated to AS, DS, R/W Driven	1.5		1.5	-	1.5	-	1.5	-	1.5	-	Clks	
58A ¹	BR Negated to FC, VMA Driven 🥢 🦑	1	-	1	—	1	_	1	_	1	-	Ciks	

 $(V_{CC} = 5.0 \text{ Vdc} \pm 5\%; \text{ GND} = 0 \text{ Vdc}; T_A = T_L \text{ to } T_H; \text{ see Figures 8, 9, 10, and 11})$

*These specifications represent an improvement over previously published specifications for the 8-, 10-, and 12.5-MHz MC68HC000 and are valid only for product bearing date codes of 8827 and later. NOTES:

1. The processor will negate BG and begin driving the bus again if external arbitration logic negates BR before asserting BGACK.

2. The minimum value must be met to guarantee proper operation. If the maximum value is exceeded, BG may be reasserted.

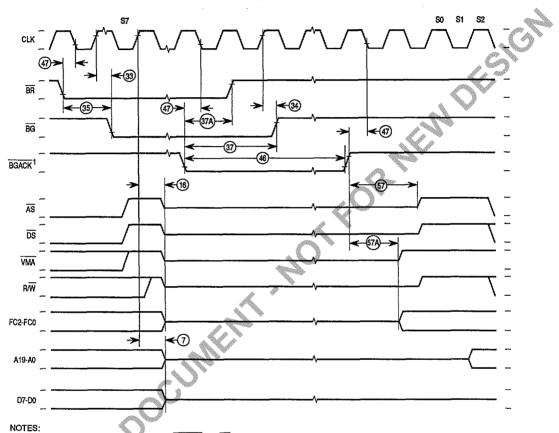


NOTE: Setup time to the clock (#47) for the asynchronous inputs BERR, BGACK, BR, DTACK, IPL2-IPL0 and VPA guarantees their recognition at the next falling edge of the clock.

Figure 8. Bus Arbitration Timing

MOTOROLA

19

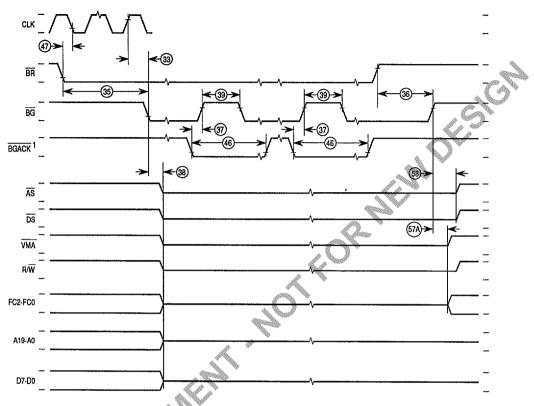


1. Setup time for the asynchronous inputs BGACK and BR (#47) guarantees their recognition at the next falling edge of the clock.

2. Waveform measurements for all inputs and outputs are specified at: logic high 2.0 volts, logic low = 0.8 volt.

Figure 9. Bus Arbitration Timing — Idle Bus Case (52-Pin Version Only for the MC68008)

ARCH



Setup time for the asynchronous inputs BGACK and BR (#47) guarantees their recognition at the next falling edge of the clock.
 Waveform measurements for all inputs and outputs are specified at: logic high 2.0 volts, logic low = 0.8 volt.

Figure 10. Bus Arbitration Timing — Active Bus Case (52-Pin Version Only for the MC68008)

Sec.

2

NOTES:

- 1. Setup time for the asynchronous inputs BGACK and BR (#47) guarantees their recognition at the next falling edge of the clock.
- 2. Waveform measurements for all inputs and outputs are specified at: logic high 2.0 volts, logic low = 0.8 volt.

Figure 11. Bus Arbitration Timing — Multiple Bus Request (52-Pin Version Only for the MC68008)

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; P.O. Box 80300; Cheung Sha Wan Post Office; Kowloon Hong Kong. JAPAN: Nippon Motorola Ltd.; 3-20-1 Minamiazabu, Minato-ku, Tokyo 106 Japan.

